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ABSTRACT

Detection and identification of military and civilian targets from airborne platforms
using hyperspectral sensors is of great interest. Relative to multispectral sensing, hyperspec-
tral sensing can increase the detectability of pixel and subpixel size targets by exploiting finer
detail in the spectral signatures of targets and natural backgrounds. A multitude of adaptive
detection algorithms for resolved and subpixel targets, with known or unknown spectral
characterization, in a background with known or unknown statistics, theoretically justified
or ad hoc, with low or high computational complexity, have appeared in the literature or have
found their way into software packages and end-user systems. The purpose of this report is
twofold. First, we present a unified mathematical reatment of most adaptive matched filter
detectors using common notation, and we state clearly the underlying theoretical assump-
tions. Whenever possible, we express existing ad hoc algorithms as computationally simpler
versions of optimal methods. Second, we present a comparative performance analysis of
the basic algorithms using theoretically obtained performance characteristics. We focus on
algorithms characterized by theoretically desirable properties, practically desired features,
or implementation simplicity. Sufficient detail is provided for others to verify and expand
this evaluation and framework. A primary goal is to identify best-of-class algorithms for
detailed performance evaluation. Finally, we provide a taxonomy of the key algorithms and
introduce a preliminary experimental framework for evaluating their performance.
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1. INTRODUCTION

Remote sensing is defined as the acquisition of information about a distant object without coming into
physical contact with it. This is made possible by exploiting the fact that the materials making the various
objects reflect, absorb, and emit electromagnetic radiation (photons) in ways characteristic of their chemical
composition. If we measure the energy of this radiation as a function of the wavelength, we can obtain a
spectral signature or simply spectrum which can be used to uniquely characterize any given material. The
measurement, analysis, and interpretation of such spectra is the subject of spectroscopy. The combination
of spectroscopy and imaging technologies and methods to acquire spectral information over large areas is
known as imaging spectroscopy. The principle underlying imaging spectroscopy is illustrated in Figure 1.
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Figure 1. Principle of imaging spectroscopy

There are four sampling operations involved in this process: spectral, spatial, radiometric, and temporal.
Hyperspectral sensors sample the portion of the electromagnetic spectrum that extends form the visible part
(0.4-0.7 um) to near-infrared (about 2.4 xum) in hundreds of narrow contiguous bands about 10 nm wide.
Figure 2 shows the evolution of the technology from the past low resolution multispectra sensors to the future
high resolution ultraspectra ones. Such high spectral resolution preserves important aspects of the spectrum



(e.g., shape of narrow absorption bands) and makes possible to differentiate between different matenals on
the ground. The spatial resolution or ground pixel size varies from meters to tens of meters and basically
is a function of flight altitude, which in turn depends on the kind of platform (spaceborn versus airborn).
Radiometric resolution is determined by the number of bits used to describe the radiance measured by the
sensor at each spectral channel. Finally, the time interval between successive passes from the same location
detrmines the temporal sampling rate.
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Figure 2. Evolution of remote sensing spectroscopy with respect to spectral resolution (Adapted from Multispectral
Imagery Reference Guide).

As aresult of spatial and spectral sampling, the fundamental hyperspectral data structure is a data cube,
whose face is a function of the spatial coordinates and its depth is a function of spectral band (or wavelength).
For every band, we have an image of the surface covered by the field of view of the sensor, whereas for each
image pixel we have a spectrum characterizing the materials within the pixel. The nature and organization
of the collected data is illustrated in Figure 3.

As a result of their fine spectral resolution, HSI sensors provide a significant amount of information
about the physical and chemical composition of the materials occupying the pixel surface, as well as the
characteristics of the atmosphere between the sensor and the surface during the data collection. Figure 4
summarizes various applications of hyperspectral imaging sensors in terms of the information which can be
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Figure 3. Imaging spectrometry data cube illustrating the simultaneous spatial and spectral character of the data.

extracted from different spectral bands. In this report, we focus on the detection of materials using their
spectral signatures.

1.1 ATMOSPHERIC COMPENSATION

Due to the effects of the illumination source and the atmosphere, the “raw’ radiance spectra obtained
by an HSI sensor cannot be directly compared to either laboratory spectra or “raw” spectra collected at other
times or places.

To overcome this obstacle, we work with the reflectance spectrum, which indicates the portion of
incident energy which is reflected as a function of wavelength. Hence, the properties of the illuminating
source and the effects of the propagating atmosphere are removed, and the shape of the reflectance curve is
characteristic of the materials in the observed pixel. Once the data have been corrected for the effects of the
atmospheric absorption and scattering, the resulting reflectance spectrum for every pixel, can be compared
to spectra of known materials available in “spectral libraries”.

1.2 SPECTRAL VARIABILITY AND MIXED PIXELS

The basic task underlying many HSI applications is to identify different matenals based on their
reflectance spectrum. In this respect, the concept of a spectral signature, which uniquely characterizes any
given matenal, is highly attractive and widely used. However, spectra observed in the natural world do not
exhibit a deterministic signature. The spectra observed from samples of the same material will never be
identical, even in laboratory experiments, due to vaniations in the material surface. The amount of variability
is more profound in remote sensing applications due to variations in atmospheric conditions, sensor noise,
material composition, location, surrounding materials, and other factors. To make matters worse, totally
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Figure 4. Applications of hyperspectral image exploitation according to the utility of different spectral bands (Courtesy
of SITAC).

different material types can have very similar spectra.

Despite these difficulties, practical experience has shown that many materials of interest can be identi-
fied on the basis of their spectral characteristics. However, the ambiguity introduced by inherent variability of
spectral signatures has important implications into the exploitation of HSI data for both civilian and military
applications.

Despite the intrinsic spectral variability and the occasional lack of identifiability, the concept of spectral
signature is widely used in remote sensing spectroscopy. In this paper, we assume that different materials are
spectrally separable and focus on the problems introduced by the inherent variability of spectral signatures.

Another significant complication arises from the interplay between the spatial resolution of the sensor
and the spatial variability present in the ground scene. The sensor integrates the radiance from all materials
within the ground surface “seen” by the sensor as an image pixel. Therefore, depending on the spatial
resolution of the sensor and the spatial distribution of surface materials within each ground pixel, the result is
a HSI data set comprised of “pure” and “mixed” pixels. Mixed pixels present an additional challenge to HSI



data exploitation because their spectral signatures do not correspond to any single well-defined material.

Dealing with spectral signature variability and spectral compositions in mixed pixels, are among the
most challenging problems in HSI data exploitation, both theoretically and practically.

1.3 BACKGROUND CLASSIFICATION AND TARGET DETECTION

There are two major applications that rely upon the ability to separate materials based on their spectral
signatures: background classification and target detection.

The main objective of background classification is to automatically assign all pixels in an HSI data
cube into land cover classes or themes, which has led to the term thematic mapping. The user has the task
to up-front determine the number and type of classes as well as to quantitatively characterize these classes
using spectral libraries or training data and ground truth information. Practical experience has shown that, the
design of a good classifier requires a sufficient amount of training data for each background class. Clearly,
for background classification, the natural criterion of performance is the minimization of the probability of
missclassification errors.

In target detection applications, the main objective is to search the pixels of an HSI data cube for the
presence of a specific material (target). Conceptually, at least at a theoretical level, target detection can be
viewed as a two-class classification problem. However, there are some fundamental practical differences,
that have a great impact upon the development and evaluation of practical algorithms for detection versus
classification applications. In surveillance applications, the size of the objects (targets) we are searching for
constitutes a very small fraction of the total search area. Therefore, the target class will be either empty or
sparsely populated. On the other hand, the general *“no-target” class includes almost all pixels in the cube
and is the union of the different specific background classes. We shall use the term “background” to refer
to all non-target pixels of a scene. Usually, targets are man-made objects with spectra that differ from the
spectra of natural background pixels.

To summarize, the key aspects of detection applications are:

1. the target class is either empty or sparsely populated

2. the amount of available a priori information, for the spectral characterization of target class, varies
depending upon the application from complete to none

3. the background class is densely populated

4. there is insufficient a priori information for adequate spectral characterization of the background class.

The sparseness of the target class implies that there are not sufficient data to train a statistical classifier
or statistically evaluate the performance of a target detector. On the other hand, the heavy population of the
background class, in conjunction with the emptiness of the target class, allows the use of the “unclassified”
HSI cube to statistically characterize the background. In detection applications, where the target probability
is very small, minimization of the error probability is not a good criterion of performance, because it can
be minimized by classifying every pixel as background. For this reason, we typically seek to maximize



the probability of detection while keeping the probability of false alarm under a certain predefined value
(Neyman-Pearson criterion).

The amount of a priori information about the spectral signature of the target, depends on the require-
ments of the specific application. A priori information about spectral signatures is available in libraries as
reflectance spectra. Therefore, to look for targets with known spectral signatures, the data must first be
converted into reflectance, a procedure that may lead to spectral distortions since it generally depends upon
assumptions and measurements about atmospheric conditions. If we have no a priori information about the
target or we are constrained to work with radiance, the most reasonable approach is to look for pixels whose
spectral content is “significantly” different from the spectral content of the local background. The detection
of targets with unknown anomalous spectra is known in the hyperspectral literature as anomaly detection and
is discussed in a companion paper.

From an applications point of view, there are different types of spectral searches that can be imple-
mented:

* determine whether a reflectance spectrum from the HSI cube exists in the spectral library (material
identification)

* determine whether a spectrum from a library is present in the HSI cube (target detection)
* identify groups of spectrally similar pixels from the same cube (spectral classification)

+ identify pixels with anomalous spectra compared to their local background (anomaly detection)

In this paper, we discuss algorithms for target detection, for the case where there is a priori knowledge
available about the target spectral signature. In the radar and communication areas, detection algorithms
are used to decide whether the received waveform consists of “noise only” or “signal masked by noise”.
Typically, there is sufficient a priori information about the transmitted signal and the performance of the
system is limited by additive noise. In contrast, data obtained by HSI sensors exhibit a high signal-to-noise
ratio (SNR) and the performance of detection algorithms is limited by target variability rather than noise.
In mixed pixels, the target spectrum can be severely masked by dominating background spectra. In this
case, detection performance is significantly limited by “background interference.” This intuitively obvious
observation leads to a fundamental partitioning of detection algorithms into two classes:

* Detection algorithms for full-pixel targets: in this case detection performance is mainly determined
by target and background variability.

* Detection algorithms for sub-pixel targets: in this case, besides the variability of target and background
spectra, detection performance is affected by background interference.

1.4 DESIGN AND EVALUATION OF TARGET DETECTORS

The mathematical framework for the design and evaluation of detection algorithms is provided by the
area of statistics known as (binary) hypothesis testing. There are several approaches for the systematic design



of detection algorithms. However, it is well known that detectors based on the likelihood ratio (LR) test have
certain advantages. First, in some sense, LR tests minimize the risk associated with incorrect decisions.
Second, the LR leads to detectors which are optimum for a wide range of performance criteria, including the
maximization of separation between target and background pixels.

Most HSI data processing techniques start with the idea that an observed spectrum can be considered
as a vector in a multidimensional space, where the number of dimensions equals the numberof spectral
bands, L . Taking into consideration spectral variability and receiver noise, the observations provided by the
sensor can be modelled, for the purpose of theoretical analysis, as random vectors with specific probability
distributions. Given an observed spectrum, x, the LR is given by the ratio of the conditional probability
density functions

» P(x|signal present)
= “p(x|signal absent)

A(x) (1)
If A(x) exceeds a certain threshold 7, then the “signal present” hypothesis is selected as true. If A(x) is
larger than the threshold, the “signal present’” hypothesis is accepted. Basically, the LR test accepts as “true”
the most “likely” hypothesis.

A practical question of paramount importance to a system designer is where to set the threshold to keep
the number of detection errors (target misses and false alarms) small. Indeed, there is always a compromise
between choosing a low threshold to increase the probability of (target) detection Pp and a high threshold
to keep the probability of false alarm Pra low. For any given detector, the trade-off between Pp and Pga
is described by the Receiver Operating Characteristic (ROC) curves, which plot Pp(n) versus Pra(n) as a
function of threshold —oc < n < oc. Clearly, any systematic procedure to determine ROC curves or the
threshold requires specifying the distribution of the observed spectra x under each of the two hypotheses.

If the conditional densities in (1) are completely known (simple hypotheses), the detector specified
by the LR has the highest possible Pp for any value of Prsa < o (Neyman-Pearson Lemma). Hence, the
ROC curve of the optimum Neyman-Pearson detector provides an upper bound for the ROC of any other
detector. It is also possible to choose the threshold in a way that leads to the minimization of the probability
of detection errors (both misses and false alarms). This leads to the well known Bayes detector or classifier,
which is widely used in pattern classification applications. It should be emphasized that the Bayes and
Neyman-Pearson detectors are specified by the same LR function; they only differ in the selection of the
threshold.

In most practical situations, the conditional probability densities in (1) depend on some unknown target
and background parameters (composite hypotheses). Therefore, the ROC curves of any detector depend on
the unknown parameters. In this case, is almost impossible to find a detector whose ROC curves remain an
upper bound for the whole range of the unknown parameters (uniformly most powerful (UMP) detector).

An intuitively appealing and widely used approach, in the case of unknown density parameters, is to
replace the unknown parameters in the LR (1) with their maximum likelihood estimates. In general, there are
no optimallity properties associated with the resulting Generalized LR (GLR), Ag(x). However, in practice,
the GLR leads to detectors that seem to work well in several applications.

Practical target detection systems should function automatically, that is, without operator intervention.
This requires an automatic strategy to set a “proper” detection threshold. A high false alarm rate wastes



processing and reporting resources and may result to system overloading. Therefore is critical to keep the
false alarm rate constant at a desirable level by using a Constant False Alarm Rate (CFAR) processor. The task
of a CFAR algorithm is to provide detection thresholds that are relatively immune to noise and background
vanation and allow target detection with a constant false alarm rate.

1.5 FRAMEWORK FOR DETECTION ALGORITHM TAXONOMY

The key factors that determine the taxonomy of hyperspectral target detection algorithms are: the type
of models used for spectral (target or background) variability . the composition of the pixel under test (pure
or mixed). and the model used to describe mixed pixels.

Probability
density model

Band 3 B
Subspace L

model

Band 2

Band 1 Band 1

Figure 5. Pictorial illustration of subspace and probabilistic models for the description of spectral variability in the
spectral space.

The observed spectral radiance data. or derived apparent surface reflectance data. can be viewed as
scattering of points in an [.—dimensional Euclidean space. where L is the number of spectral bands. Each
spectral band is assigned to one axis of the space, all axes being mutually orthogonal. Therefore, the spectrum
of each pixel can be viewed as a vector. The tip od this vector corresponds to a point. whose Cartesian
coordinates are the values at each spectral band (see Figure 5). Spectra without vanability correspond to a
single fixed point. whereas the tip of vector corresponding to spectra with variability can be anywhere within
a certain volume of the spectral space. Depending on how we specify thsi space. there are two widely used
ways to describe spectral variability.

The geometric approach restricts the spectrum vector to vary in an M-dimensional subspace of the
data space (M < L). The observed spectrum is described by

M
W = E aisy = Sa 2)
k=1

The vectors s, or equivalently the matrix S, which define the variability subspace. can be (a) endmembers
determined from spectral libraries or the data. or (b) vectors obtained with statistical techniques (for example,



the eigenvectors of the data correlation matrix). Clearly, the variability increases as M increases from one
toL.

The statistical approach provides a probability distribution model for the description of the spectral
variability. Usually, first- and second-order moments (mean vector and covariance matrix) are employed
under a multivariate normal distribution assumption. Clearly, variability is related to the spread of the
distribution, and the highest variability is obtained for a uniform distribution over the data space.

For full pixel targets, there is no significant interaction between target and background other than
secondary illumination, shading, etc. Hence, the spectrum observed by the sensor is produced either by the
target spectrum or the background spectrum. In both cases, the observed spectrum is corrupted by additive
sensor noise. The sensor noise is assumed insignificant or accounted for by the target and background
distributions.

For subpixel targets, both the spectrum of the target and the spectrum or spectra of the background
contribute to the observed mixed pixel spectrum. There are two widely used models for modelling subpixel
targets.

The most widely used spectral mixing model is the linear mixing model [1] (LMM), which assumes
that the observed pixel spectrum is generated by a linear combination of a small number of unique constituent
deterministic spectral signatures known as “endmembers”. The mathematical formulation of the LMM is
given by

M
x=2aksk+w=5a+w 3
k=1

where 5|, §2, .. ., Sy, are the M endmember spectra, assumed linearly independent, a;, aa, ..., ay are the
corresponding abundances, and w is an additive noise vector. Endmembers may be obtained from spectral
libraries, in-scene spectra, or using geometrical techniques. We point out that the enforcement of positivity
(a; > 0) and addiuvity (a; +az + - - - +apy = 1) constraints makes the LMM a replacement model. Spectra
satisfying the LMM with both sets of constraints are confined in an L-dimensional simplex [1] studied by
the mathematical theory of convex sets.

If the endmember spectra are randomly and independently drawn from multivariate normal distribu-
tions, we have the stochastic mixing model [53,60].

The choice of a pixel composition assumption (pure or mixed pixel), the selection of a model to account
for spectral variability (subspace or probability distribution), and the selection of a mixing procedure leads
to different types of target detection algorithms. The detection problem is typically formulated as a binary
hypothesis test with two competing hypotheses: background only (Hp) or target and background (H;). Since
the two hypotheses contain unknown parameters (for example, covariance matrix of the background) that
have to be estimated from the data, the detector has to be adaptive, and it is usually designed using the
generalized likelihood ratio test (GLRT) approach.

Most detection algorithms for full pixel and subpixel targets have been obtained by describing spectral
variability using the multivariate normal distribution or a subspace model. Mixed pixels are usually modelled
using the LMM. A target detection algorithm based on the stochastic mixing model, known as finite target
matched filter, is discussed in [53, 60).



Finally, we note that, in several practical applications we do not have adequate a priori information
about the desired target. In such cases, it is possible to design algorithms that look for spectra which deviate
from the local background (anomaly detection). The type of the statistical model used for the background
leads to different anomaly detection algorithms. Use of a multivariate normal distribution model leads to the
RX algorithm [45,63] which is one of the most widely used algorithms for anomaly detection. Recently,
a new algorithm [58] has been developed, which fuses the local statistics used by the RX algorithm and
the clustering statistics obtained using stochastic expectation maximization (SEM) to improve detection
performance. More details about anomaly detection algorithms can be found in [57].

Table 1 provides a conceptual taxonomy of target detection algorithms according to the adopted signal
model and the available a-priori information. We note that both target and background variability may be
modelled using either a multivariate normal distribution or a subspace model. However, most practical
algorithms for target detection use subspace models to account for target variability.

TABLE 1. Taxonomy of algorithms for target detection.
A-priori information Quantity Matched filter Clairvoyant Adaptive Anomaly detection

Target subspace S Known Known Known Unknown
Target abundance a Known Unknown Unknown Unknown
Background and noise T Known Known Unknown Unknown
covariance

Background subspace B, o2 Known Known Unknown Unknown

and noise variance

The rest of the report is organized as follows. Section 2 provides a brief description of the HSI data
sets used for the experimental investigations and the various practical issues regarding the implementation
and evaluation of target detection algorithms. The mathematical modelling of spectral variability for target
and background pixels is the subject of Section 3. In Section 4, we discuss detection algorithms for full-pixel
(or resolved) targets. Detection of sub-pixel targets is presented in Section 5. The linear mixing model and
the estimation of its parameters using the principle of least squares is discussed in Section 6. The application
of the linear mixing model to sub-pixel target detection is the subject of Section 7. Finally, we present a
taxonomy of target detection algorithms in Section 8 and a brief conclusion in Section 9.
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2. DATA DESCRIPTION AND PRACTICAL CONSIDERATIONS

Airborne hyperspectral imagery data collected by the HYDICE [48] sensor at the U.S. Army Aberdeen
Proving Grounds on 24 August 1995 will be used to illustrate various issues and algorithms discussed in this
report. HYDICE collects calibrated (after processing) spectral radiance data in 210 wavelengths spanning
0.4 to 2.5 wm in nominally 10 nm wide bands. Figure 6 shows a single band (A = 0.565 um) image of the
Run 07 data collected at 9:27 AM local time under clear conditions from an altitude of 3 km. The spatial
resolution of the imagery is approximately 1.5 meters.

Figure 6. Run 07 data and three regions used for statistical analysis and detection algorithm evaluation.

The implementation of hyperspectral target detection algorithms in a real-world environment involves
confrontation with many “practical details” and challenges that result from the violation of the theoretical
assumptions used for the derivation of the various algorithms.

To illustrate various issues regarding detection algorithms, we shall use the Forest Radiance I data



(see Figure 6) collected with the HYDICE sensor. We have selected the three areas outlined in Figure 6 to
investigate three different types of background: grass (G), trees (T), and mixed grass-road (GR). The first
two scenes are relatively homogeneous, whereas the third scene consists of a non-homogeneous background
including different types of grass and roads. Also considered were classes resulting from a supervised
classification process performed to isolate spectrally similar (not necessarily spatially adjacent) pixels. Data
from two classes selected from this analysis were labelled "Class 2 Grass" and "Class 9 Tree". Table 2
summarizes the classes analyzed and their sample sizes (number of pixels).

TABLE 2. Classes selected for statistical analysis.

Class name Selection Technique Sample Size
Grass Spatially adjacent 7,760
Tree Spatially adjacent 8,232
Mixed Spatially adjacent 7,590

Class 2 Grass  Supervised classification 27,351
Class 9 Tree  Supervised classification 25,872

The data were analyzed in units of calibrated spectral radiance for the characterization of joint statistics
(Section 3.3) and surface reflectance for the modelling of target detection statistics (Section 4.4). While
hyperspectral data is often transformed to apparent surface reflectance through an atmospheric compensation
algorithm, such transformations are usually linear, and as such, do not affect the statistical distributions.
Also, for the multivariate analyses examples, only 144 of the 210 channels were used to avoid regions of
low signal-to-noise ratio (water vapor bands). While it is known that data artifacts exist in the calibrated
spectral radiance due to an interpolation process used to replace "dead” pixels, only the data selected by the
supervised classification technique had any type of screening applied for anomalous pixels. The other classes
represent typical data as it would be processed by an unsupervised automated algorithm.

Regarding the characterization of in-scene targets, single-pixel or multi-pixel, we can identify pure
or mixed pixel with a certain level of confidence, only. Therefore, it is useful to label the pixels in the
vicinity of a target as full, mixed, shaded, and guard pixels, and distinguish among such pixels when we
compare different detectors. This concemn, has lead to the development of target masks (see Figure 7) by an
elaborate manual process. Target masks are part of the HYDICE “Canonical Data Sets” developed at Lincoln
Laboratory.

Figure 8 shows the reflectance spectra of the pixels specified by the target mask in Figure 7. The mean
value of the full pixel spectra, which is used as the target template by detection algorithms, is shown by a
thick line in all plots.

A target detector maps the multidimensional test pixel spectrum x into a scalar detection statistic
y = D(x) (see Figure 9a). The detection threshold is determined by the user or a CFAR processor. The
distribution of the detection statistics of the background and target classes (see Figure 9b) determine the
performance of the detector using ROC curves. The ability to properly determine a threshold or achieve CFAR

12



Subpixels

Full pixels

Shaded pixels

Figure 7. Example of a target mask, illustrating the various tvpes of pixels identified in the canonical data sets.

operation depends upon the accurate modelling of the background detection statistics. The performance
evaluation of detection algorithms in practice is challenging due to the limitations imposed by the limited
amount of target data. As a result the establishment of accurate ROC curves is quite difficult. Indeed. it is
well known, that as a rule of thumb, the minimum number N of pixels used to estimate a probability P should
be 10/ P or more preferable 100/ P. In this report. we shall compare the various algorithms in terms of their
ability to operate in CFAR mode and the enhancement of the separation between targets and background
they provide. Sensor and environmental noise do not seem to be significant factors.

The CFAR property depends on the capability to accurately model the detection statistics of the
background pixels for a given algorithm. In this respect, we use a quantile-quantile (Q-Q) plot [17] to
compare the empirical distribution of the background detection statistics to the theoretically expected one.

Taking into consideration that the number of target pixels is much smaller than the number of back-
ground pixels. a useful way to represent the output of any target detector is shown in Figure 11. The key
idea is to represent the background response by its histogram and the response of the various “target” pixels
by stems, whose location indicates the magnitude of the detector output and the type of the pixel. The
enhancement of target visibility is characterized by the separation between the upper limit of the background
histogram and the full target pixel with the smallest detection statistics response.
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Figure 9. (a) Every detector maps the spectrum x of the test pixel (multidimensional vector) into a scalar detection
statistic y = D(x). (b) Modelling the background detection statistic is important for CFAR operation.
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Figure 10. Use of Q-Q plots for evaluating background detection statistic for potential CFAR operation.
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Figure 11. Representation of the response of a target detector to background and different types of target pixels.
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3.  MODELING SPECTRAL VARIABILITY

In examining the statistical properties of the data. several groupings. or classes, were considered. Three
regions are identified in the white boxes in Figure 6 describing three classes that were selected by their spatial
proximity. In the lower right is a "Grass" region. the middle top is a "Tree" region. and on the left is a "mixed"
region. These regions define the pixels selected for three of the classes considered. Also considered were
two classes resulting from a supervised classification process performed to isolate spectrally similar (not
necessarily spatially adjacent) pixels.

3.1 SINGLE WAVEBAND STATISTICS

Before discussing the joint, or multivariate. statistics. it is worthwhile to examine some of the scalar. or
marginal, statistics. Figure 12 presents Q-Q plots for two of the classes and one spectral channel. showing the
cumulative probability distribution as a function of the data value. overlaid with straight lines representing
Gaussian data. As one can see. neither class would be well represented by the Gaussian assumption, although
the class selected through the supervised classification process is slightly better matched to the Gaussian
assumption. Additional insight into single waveband statistics can be found in [62]. Since. detection and
classification applications mainly depend upon the joint distribution of the data.we are not going to further
investigate single waveband statistics in this report.
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Figure 12. Quantile-Quantile (Q-Q) plots of HYDICE data from band 39 (A = 0.565;um) for (a) Class 2 Grass and
(b) Mixed background data. Also shown are straight lines corresponding to the normal distributions.




3.2 RANDOM VECTORS WITH ELLIPTICALLY CONTOURED (EC) DISTRIBUTIONS

The class of elliptically contoured (EC) distributions contains distributions that have similar features
to the multivariate normal distribution, but which exhibit either longer or shorter tails than the normal. In
this section, we consider the class of scale or compound mixtures of normal distributions, which is a subclass

{10] of EC distributions.

A random real vector x = [x1x;... x,,]Twith mean g and covariance matrix I' has an EC distribution
if and only if its PDF has the form [10]

fo(x) = 2r) P27 2k, (d) )
where d is a quadratic form (Mahalanobis distance) defined by
d=@-—p)T'(x—p) (5)

and h,(d) is a positive, monotonically decreasing function for all p. We shall denote such a distribution
using the shorthand notation EC(n, I', h).

The multivariate normal distribution (MVN) is a special case with

h,(d) = exp(—-;-d) (6)

In addition, the EC class includes the multivariate ¢, the multivariate Cauchy, and the double exponential
distributions. The discrete normal (Gaussian) mixture, which is widely used in supervised or unsupervised
pattern recognition algorithms, is a special case of EC distributions. The normal mixture PDF is a simple
finite weighted sum of normal PDFs and can be used for the approximation of many other ECDs. The
common feature of all ECDs that they all have elliptical contours of equiprobability. Many of the properties
of the multivariate normal distribution extend also to the class of EC distributions. Thus, all the marginals
of an EC distribution, and the conditional distributions of some variables, given the values of the others, are
also EC.

Any ECD, x, can be represented by
x=T"?@w)+p M
where
z~N@O,I) ®

and v is a non-negative random variable independent of z. The type of an ECD is uniquely determined by
the PDF f,(v) of v, which is known as the characteristic PDF of x. The random variable v is normalized
so the E{v?} = 1, that is, to unit mean squared error. Clearly, f,(v) and I' can be specified independently.

If we have an analytical expression for f,(v), the class of admissible 4 ,(d) functions is obtained by

o0 1d
- -p g
hp(d) = fo v exp( 3 v2>fv(v)dv )
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The PDF of Mahalanobis distance d is given by

fold) = d?* 1 h (d) (10)

2°/2T'(p/2)

and can be used to uniguely reduce the multidimensional PDF modeling problem to an equivalent one-
dimensional one. If x(n), ..., x(N) form a random sample from a N (g, I') population, then

d(n) = [x(n) — ) T (x(n) — p] (1)
forn=1...., N correspondingly form a random sample from a x;‘: distribution with p degrees of freedom.

If the PDF f,(v) is not available in closed form, we can generate SIRV’s and determine h,(d) by
expressing x in spherical coordinates r, 6, and @1, ¢, ... , ¢,—2 . The PDF of r is given by

re-!
2r2=1T\(p/2)
The angles 6 and ¢, are independent of the radius r and they do not affect the type of the SIRV.

for) = hp(r*yu(r) (12)

One of the most important implications of (10) is that the multivariate PDF for any ECD is uniquely
determined by the univariate PDF of the Mahalanobis distance (5). As aresult, the multivariate PDF identifica-
tion problem is reduced to a simpler univariate one. This result provides the comerstone for our investigations
inthe statistical characterization of HSI data. Several researchers [43,44] have developed libraries and gener-
ation techniques for ECDs specified by their characteristic PDF or h ,(d) that can be applied to our objective
of modelling unknown hyperspectral backgrounds.

3.3 MULTIPLE (JOINT) WAVEBAND STATISTICS

Since the distribution of multivariate data in the observation space isinherently "sparse", itisimpractical
to use goodness-of-fit tests to evaluate the capacity of the multivariate normal distribution or ECDs to
characterize HSI data. In practice, we can assess multivariate normality using techniques from the following
categories [17]: (a) Univariate techniques for evaluating marginal normality, (b) Multivariate techniques for
evaluating joint normality, and (c) Techniques that use unidimensional views (projections) of multivariate
data. These techniques can be extended for the characterization of elliptical {10,43,44] distributions.

If we know the mean and covariance of a multivariate random sample, we can check for normality by
comparing the distribution of the Mahalanobis distance (11) against a chi-squared distribution. However, in
practice, we have to estimate [21,29] the mean and covariance from the available data. To this end, we use
the maximum likelihood estimates of the mean

1 N
b= ";x(n) (13)
and the covariance matrix
5 e A e
F=— ;“‘(") — illx(n) — i) (14)
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to compute the Mahalanobis distance

d(n) = Lx(n) — @]7F ' [xm) — ] (15)

N-1
for all pixels 1 <n < N. If x(n) ~ N (u, I'), it can be shown that d(n) is distributed according to the beta
distribution

1

a—1 _ b~-1 1 16
B(a,b)d (=d)™s V=d= (16)

pa(d) =

where the parameters

p N—p=l

2
When the sample size, N, is greater than about 10p, the difference between the true beta distribution and

the chi-squared approximation, xg, is negligible for our purposes. Therefore, x? probability plots provides
a good graphical method for testing multivariate normality.

a= and b=

(7)

For EC random vectors, the distribution of the Mahalanobis distance completely characterizes their
joint PDFE. Therefore, to test whether an EC (i, I', h) fits the data, we follow three steps: (a) compute
the Mahalanobis distances (15), (b) compute the expected PDF (10), and (c) compare the two distributions
using a probability plot. However, for detection applications, where the key goal is accurate prediction of
the probability of false alarm, it is more interesting to compare the empirical and theoretically predicted
probabilities of false alarms. It is interesting to note that the Mahalanobis distance (15) is the statistic used
by the popular RX algorithm [45, 58] for anomaly detection.

From the multitude of ECDs discussed in statistics literature, the EC r-distribution [10] has been shown
to provide a good model for many HSI data sets [40]. This distribution is defined by

L+vy

) _ THL+v)/2] A e T R L
tL(x’ i, Cv U)—— F(U/Z)(UL)L/2IC|1/2 [1+ ‘U(x ”‘) c (x ”’)] (18)
where
Ex}=n (19)
Covlx} = - = 5C (20)

where v is the number of degrees of freedom and C the scale matrix. The Mahalanobis distance is distributed
as

1
T - wWClx—p)~Fp, 1)

where F; , is the F-distribution with L and v degrees of freedom. The integer v controls the tails of the
distribution: v = 1 leads to the multivariate Cauchy distribution (heavier tails), whereas as v — oo the EC
t-distribution approaches the multivariate normal distribution (lighter tails).
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When the covariance matrix is estimated from the data, the distribution of the Mahalanobis distance

can be approximated by (21) when the number N of pixels used to estimate the covariance matrix is much
larger than the number of bands L.

To study the joint (among bands) distribution of HSI data sets, we compute the probability of exceedance
of Mahalanobis distance for various HYDICE data sets. The obtained empirical distributions are compared
to the theoretical chi-squared and F distributions corresponding to the multivariate normal and ¢ distributions.
To reduce the effects of spatial inhomogeneity, we divide the data cube into rectangular blocks as shown in
Figure 13. The distribution of the Mahalanobis distance is shown in Figure 14 for all blocks plus the three
spatially determined classes.

* HYDICE (HYperspectral Digital Imagery
Collection Experiment)

- Airborne sensor
* 210 spectral bands
- 399-2501 nm
- Channel widths~3 - 11 nm
- Spatial resolution, Tmx1m

Classes Selected for Statistical Analysis

Class Name Selection Technique Sample Size
Grass Spatially Adjacent 7,760
Trees Spatially Adjacent 8,232
Mixed Spatially Adjacent 7,590
Blocks 1-8 Spatially Adjacent 25,000

Figure 13. Division of data cube into rectangular blocks to reduce spatial inhomogeneity.

Another way to reduce spatial inhomogeneity is to model each class obtained by supervised or un-
supervised classification separately. To this end, we use the classes shown in Figure 15, which have been
derived by elaborate processing techniques by a group at the Remote Sensing Laboratory, Purdue University.
The distribution of the Mahalanobis distance for the five most populated classes is shown in Figure 16.

The results in Figures 14 and 16 indicate that, typically, the joint distribution of HYDICE data cubes
cannot be accurately modelled by the multivariate normal distribution. However, the elliptically contoured
multivariate z-distribution provides a promising model. We note that the ¢-distribution tends to the normal
distribution when the number of degrees of freedom increases.
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Figure 14. Modelling the distribution of the Mahalanobis distance for the HSI data blocks shown in Figure 13.

3.4 SUBSPACE OR LOW-RANK DATA MODELLING

To understand the nature of target variability, we compute the angle between all possible pairs of target
spectra for the targets shown in Figure 17. The resulting matrix is displayed pictorially as an image, which
show the angular variability of the target spectrum. Furthermore, we show the histogram of the angle between
each target pixel spectrum and the mean spectrum. The clustering of the spectra about the mean indicates
that target spectra populate a lower dimensional subspace of the L-dimensional data space. To investigate
the nature of this subspace, we can use the singular value decomposition technique.

The background subspace matrix Sy, can be estimated from the HSI cube using statistical or geometrical
techniques [28]. To describe the ideas behind some of these methods, consider a matrix X7 of size L x N,
where each column contains the spectrum of an HSI pixel x (n), that is

XT2[x(1)x(2)...x(N)] @2

where N is the total number of pixels. Background characterization for the detection of low-probability
targets can be done using the eigenvectors [11,56] of the HSI cube correlation matrix Ié,c = X"X/N or
equivalently the singular vectors [61] of the data matrix X”. In the first case, matrix S}, is formed by the
first Q significant eigenvectors of R,. In the second case, S}, is formed by the first Q significant left-singular
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* Supervised classification Classification Result Natural Color
resulted in 12 background OSRRI
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a ' | I l Unlabelled
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Grass 1 57,274 @ Grass 1
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Tree 1 16,732 Sl Crass3
Tree 2 16,668 @ et
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Shaded Trees 25,496
Shaded Road 7,448 @ Bushes
Road 1 575 - Shaded Trees
Road 2 8,049
Road 3 4,066 @l shaded Road &
Road 4 5,648 - Road 1
* (lasses were screened to - Road 2
be unimodal - Aatls
* Fine class distinctions
apparent B Road4

Figure 15. Classes, classification results, and natural color image for the analyzed HYDICE data cube.

vectors of X”. The SVD decomposition implies the following approximation

r Q
AT
XT=UzZVT =) sy =X =) Gu] (23)

which is optimum in the sense of least squares error. It can be shown that

N r
Jxemy —2m|*= > &2, (24)
1

k=Q+1

n=

where o, are the singular values of X. To obtain a good estimate of the background, the spectrum of interest
should not be included among the significant eigenvectors or singular vectors. It should be stressed at this
point that there is no one-to-one correspondence between the estimated S, and spectral properties. This
is not a problem for detection applications as long as Sy, provides a good statistical approximation of the
background and there is no leakage from the target subspace to the background subspace. The rarity of the
target is a very important requirement in this respect; however, it is helpful to remove target-like pixels (that is
pixels with large projections || STx(n) || onto the target subspace) before computing the eigendecomposition
or the SVD. Target leakage can be also reduced by excluding eigenvectors or singular vectors with large
projections || S,T uk|| onto the target subspace [61].

Figure 18 illustrates that a three dimensional subspace can be used to accurately model the spectral
variability of the selected target. Indeed, Q = 3 singular vectors can be used to reconstruct 45 target spectra
with a squared error of the order of 10~3 percent.
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Figure 16. Modelling the distribution of the Mahalanobis distance of the HSI data classes shown in Figure 15.
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4. DETECTION ALGORITHMS FOR FULL-PIXEL TARGETS

In this section, we assume that target pixels are completely filled by the material-of-interest, that is,
we focus attention to full-pixel or resolved targets. In this case, the detection process is complicated by
the spectral variabilities of the target and background classes. We can think of the totality of target spectra
as constituting a target class and those from the background as being the background class. Let R be the
entire L-dimensional space in which the point of L-band spectrum x falls. In order to make a decision,
we should divide the region R into two regions, R, and Ry, by some optimum method. A pixel is assigned
to the target class if its spectrum x falls in region R, or to the background class if x falls in R,. We shall
pictorially illustrate the various concepts and algorithms using a hypothetical sensor with two spectral bands.
However, due to the geometrical framework, the results and their interpretation hold for spectra produced
by HSI sensors with a much larger number of bands. This process is illustrated in Figure 19 for L = 2
bands. Clearly, meaningful decision making is possible if the observed target spectra differ to some extent
from the observed background spectra. Usually, the two classes overlap and even the best detector will result
in misclassification errors. In general, the decision boundary will be a curve corresponding to a nonlinear
detector. We can also make a decision by processing the spectrum vector x by a system which calculates a
scalar y = D(x) and then comparing y to a scalar threshold. Usually, the function D(x) is obtained using the
LR or GLR approaches. This system, which can be linear or nonlinear, is known as classifier, discriminant
function, statistic, filter, or detector. We shall interchangeably use the terms filter or detector since they are
widely used in the engineering literature.

A 3511342

A Ay Decision

Boundary
* |+  Target(T) .

.+ » Background (B)

Ay

Figure 19. Hllustration of the feature space for two-class classification using two spectral bands.

We discuss two approaches. First, we shall use the LR to obtain detectors without any structural
constraints, that is, detectors with arbitrary decision surfaces in R*. Second, we focus on the design of
detectors with hyperplane decision surfaces. These linear detectors project the data onto a line specified by
their coefficient vector with the objective to increase class separation.
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4.1 LIKELIHOOD RATIO DETECTORS

Since statistical decision procedures, based on normal probability models, are simple and often lead
to good performance, we shall model the target and background spectra as multivariate normal vectors. A
random vector x follows a multivariate normal distribution with mean vector g % E{x} and covariance
matrix I' £ E{(x — p)7 (x — p)}, denoted by x ~ N(u, I'), if its probability density function is given by

1 ] T=1
=5 —5(x=p)' I (x—p)
ks (27r)’-/2|l'|1/2e : (25)

where | I'| represents the determinant of matrix I'.

Consider the detection problem specified by the following hypotheses

Hy:x ~ N(py, I'y) (Target absent)

(26)
Hy:x~N(u,, I') (Target present)

where the target and background classes follow multivariate normal distributions with different mean vectors
and covariance matrices. Since the probability densities are completely specified under each hypothesis, we
can design a Neyman-Pearson detector. Indeed, computing the natural logarithm of the LR (1) leads to the
quadratic detector

1 1
y=D() =3~ po) Iylx —py) — S - p) 7 (x—p) (27)

which compares the Mahalanobis distances of the observed spectrum from the centers of the two classes.
The required threshold 7 is determined from

Pea = f Py e 28)
n

where a is the desired probability of false alarm. As a result of the quadratic mapping, the distribution of the

random variable y (detector output) is not normal, which makes the performance evaluation of the detector
difficult.

If the target and background classes have the same covariance matrix, that is, I, = I'y £ T, the
quadratic terms in (27) disappear, and the likelihood ratio detector (27) becomes

y=D@x)=(t,— ) I 'x (29)

In this case, we have a linear detector

L
y= CT X = chxk (30)
k=1

which is specified by the coefficient vector

c=T""(u, — py) (31

28



The output y is now normally distributed because it is a linear combination of normal random variables. This
result simplifies the evaluation of the detector and the computation of detection thresholds using (28).

A further simplification occurs when the observed spectra have uncorrelated components with equal
variances, that is, I' = ¢2I. In this case, we have

1
y=Dx)=— (Ix = s ll® = llx — poll?) (32)

which is the well known Euclidean distance classifier. Equivalently, this can be expressed as

1 1
y= (=) x = = x - p"x) (33)

which compares the correlation of the input spectrum with the mean of target and background spectra.

4.2 LINEAR (MATCHED FILTER) DETECTORS

When I', # Iy, the resulting Neyman-Pearson detector is nonlinear. However, many times, either for
simplicity or necessity, the design of a linear detector is the only available option. Optimum linear detectors
can be formed by

¢=(kiTy + w2l (1, — 1) (34)

where k| I'y, + kT, should be positive definite. It has been shown (see [3], Section 6.10) that the constants
«1 and k, can be chosen to (a) minimize the total error rate, (b) minimize one error rate with the level of the
other error rate specified, or minimizing the maximum of the two error rates.

Since the output of the detector is normally distributed when x is multivariate normal, detection
performance is determined by the means (uy, 1,) and variances (orbz, 0(2) of y, under the two hypotheses. It
can be shown [14] that minimization or maximization of any criterion J (i, i1, 62, 6.2) yields

c=[Ty+ (1 =8I (n, — ny) (35)
where
J /302
— G (36)
aJ /oy + dJ /9o,

is a weighting factor 0 < § < 1. We note that the functional form of J affects the matched filter only through
8. The criterion J = (u, — up)?/(0} + 02) leads to § = 1/2, J = (u, — up)* /0 leads to 8 = 1, whereas if
J = (Pul + Poul)/(Pol + Pyo) we obtain § = P,.

The most important implication of (27) and (34) is that, when I') = I', = T, both lead to the same
linear detector

emr =« (0 — 1) (37)

where « is a normalization constant. Furthermore, for kx = 1 this is identical with the LR detector (31) for
equal covariance matrices. This detector, which is known as Fisher Linear Discriminant [13], is widely
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used in pattern recognition applications. We shall use the term matched filter (MF), which is more widely
used in the communications and signal processing literature. There, the matched filter (37) is usually derived
by maximizing the cost function

s [EGIHY — EQIHP [ — 1))
e var{y|Ho} = e &

which measures the distance between the means of two normal distributions in units of the common variance.
The maximum, which is obtained by substituting (37) into (38), is

Tmax = A2 & (= ) T (e — ) (39)

which is the Mahalanobis squared distance [23] between the means of the target and background distributions.
The filter (37) with « = 1/A? minimizes the output variance ¢ I'c subject to the linear constraint ¢” g, = 1.

Geometrical interpretation The output of a linear detector is the projection of the observation x
along the direction of the parameter vector ¢. We wish to determine the direction which provides the “best”
separability between the two classes. The direction of the optimum matched filter for a white or spherical
background distribution is along the direction of u, — .. For elliptical backgrounds this direction is modified
by the transformation I' . If we use the square-root decomposition I' = I'/2I'"/? and we remove the mean
of the background from the observed spectrum, the output of the matched filter is given by

y =ik [F72 (= pp)] [T (x — )] 2 k(2D (AF) (40)

The transformation A¥ £ I'"'/?(x — p,), known as whitening or spherizing, creates a random vector with
identity covariance matrix. The output of the matched filter is the projection of the whitened difference Ax
along the direction of At £ I'"'/?(u, — u,). The operation of the matched filter in the original spectral
space and the whitened space are illustrated in Figure 20. If we choose x = 1/ || Ail”2 = 1/A?, the output
of the detector is normalizedso that y = D(p,) = 1. If we setx = 1/ (| Afz| | A%]), we obtain a nonlinear
processor which provides the cosine of the angle between the vectors Aji and Ax. In the original space,
this is the Mahalanobis angle between the vectors Apx and Ax. The length of a “spectral” vector increases
or decreases when the overall illumination increases or decreases, but its angular orientation remains fixed.
Equivalently, the shape of the spectrum remains the same but its amplitude changes proportionally to the
illumination. For this reason, angle distances play an important role in HSI data processing.

Detection Statistic The properties of a given detector are specified by the distribution of its output,
y = D(x). In the first case, we assume that the observation x is the only random quantity used to compute
the output of the detector. This is the case, when we know the required mean vectors and covariance matrices.
It is known, thatif x ~ N(u. '), then y = ¢"x ~ N(c"u, ¢" I'c) for any non-null vector c. Therefore,
when the mean and covariance matrices of the target and background classes are known, the output of the
detector follows [3] the univariate normal distributions N (¢” g, ¢ I'c) and N (¢ ,,, ¢” I'pc) for the target
and background classes, respectively. These distributions can be used to determine the probabilities of
detection and false alarm for any threshold n. We note that, the normalization constant « = 1/A implies
y ~ N(0, 1), which simplifies the selection of the threshold. For deterministic targets I' = 0 and g, = s,
which implies x = s with probability one.
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Figure 20. lllustration of matched filter operation (a) Projection in the “best” direction (b) Background whitening
followed by projection onto the At vector.

4.3 ADAPTIVE MATCHED FILTERS

The matched filter detector (37) requires the mean vector and the covariance matrix of the target and
background distributions. Furthermore, the resulting detector is optimum (in the Bayes or Neyman-Pearson
sense) only when the target and background classes follow multivariate normal distributions with the same
covariance matrix, an unlikely situation for real-world HSI data. In practical applications, these quantities
are unavailable and have to be estimated from the available data. Under the assumption of low-probability
targets, we can use the available data x(n),n = 1, 2, ..., N, to determine the maximum likelihood estimates

.1 .
=) x> iy, 41)

n=1
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of the mean vector and covariance matrix of the background. Unfortunately, there is usually not sufficient
training data to determine the mean and covariance of the target. Typically, we use a target spectral signature
s, from a library or the mean of a small number of known target pixels observed under the same conditions.

The resulting adaptive matched filter (AMF) is given by
a1
= sty &

(43)

A=

5T &
where usually the data cube mean is removed from the target and test pixel spectra.

If we know the “true” covariance matrix I'y, the output y is distributed as y ~ N (yo, (s"I';'s)™1),
where y, = E{y}. When the required means and covariances are estimated from the data, the resulting
estimates are random quantities. If we treat them as constant, we can determine the class-conditional
distribution of the detector output as in the known statistics case. However, the correct approach is to treat
the estimated means and covariances as random and determine the unconditional distribution of y = D(x).
Unfortunately, the derivation of unconditional distributions is a very difficult problem, even under the most
simplified assumptions. An extremely complicated expression for Fisher’s linear discriminant has been
obtained by Sitgreaves [55].

The distribution p,(y), when we use the sample covariance matrix r b, has been determined in a paper
by Richmond [46] to be

sTry's Ny— L +2 Ny—L+3 Ny+2 1 o
= : i —=(y — 7 B 44
pv(y) N1l ! 1( 3 5 2(y Yo)'s' Iy S) (44)
where
o
I'(a+ B)I (b)x?
Fi(a;b; x) = 45
TR 055 ﬂzﬂ T @I &+ BB “@5)

is the confluent hypergeometric function and I” (v) denotes the Gamma function. Recall that L is the number
of spectral bands and N, is the number of pixels used to estimate the covariance matrix of the background.
The background pixels are assumed to come from a multivariate normal distribution x ~ N (u,,, I',). Figure
shows p,(y) for L = 64 and L = 144 spectral bands for various values of N,. We see that, as the number
of pixels used to estimate the covariance matrix of the background increases, the distribution approaches the
normal distribution curve (see [34] for more details). This is expected because as N, — 00, the sample
covariance matrix I'y — Iy, the true covariance matrix of the background. However, as the number of bands
increases, the tails of the distribution deviate more from the tails of the normal distribution. This differs from
what we would expect by invoking the central limit theorem.

Constrained Energy Minimization (CEM) A similar detector, termed the constrained energy mini-
mization (CEM) algorithm [19], can be obtained by minimizing the total energy of the filter output

_1 z 2 __ T 1 ad T Tp
E—Ngy(n)—c [ﬁgx(n)x (n) |c =c"Re (46)
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Figure 21. Probability density function of p.(v) for various values of the number Ny, of the background pixels. The
thresitold is measured from the ideal value v, in units of { s,T r ;'s,)“m.

subject to the constrain ¢! s = 1. The matrix R is the sample correlation matrix of the data cube. The solution
is

~ —1

B R s
Coam = — = (&7)

s"R s

assuming that the sample correlation matrix is invertible. The minimum of the cost function is given by
.

Ecpm = 1/s"R s
Spectral similarity measures The widely used spectral angle mapper [54] (SAM) algorithm is given
by
six

(s'l's)l/IZ(x'l‘x)l/2

Dsam(x) = (48)

Clearly, SAM is the cosine of the angle between the test and target spectra and is always between zero and
one because all spectra vectors have positive components. We note that SAM is usually defined in the remote
sensing community as the angle between two vectors, instead of the cosine of the angle.

4.4 DISTRIBUTION OF UNIVARIATE MATCHED FILTER DETECTION STATISTICS

The heavy tails in the univariate distribution of the Mahalanobis distance imply heavy tails in the
multivariate distribution of the data. Theretore, heavy tails may appear not only in the quadratic Mahalanobis
distance, but in other linear and quadratic statistics employed in several widely used [35.36] target detection
techniques. In this section. for illustration purposes, we shall investigate the statistic of the popular matched
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Figure 22. Matched filter output statistic (a) histogram and firted normal density curve and (b) normal probability plot
for the tree data set.

filter [36] algorithm termed Constrained Energy Minimization [12] (CEM). The algorithm is given by

s— ' x -

Dx) = = -
(s—)'r (s —

(49)

where s is the desired target spectral signature and x is the test pixel. 1f x ~ A(u. ), and N is large
compared to the number of bands L, 7(x) should be normally distributed. Figure 22 shows the histogram
of the matched filter output for the tree data set and the corresponding normal probability plot. Clearly, the
normal probability plot indicates the existence of heavy tails. Similar plots, with smaller or larger deviations
from normality. have been produced using the other data sets. Hence. using a normal distribution to predict
the probability of false alarm will provide optimistic estimates.

The tamily of symmetric o-stable (SaS) distributions provides a good model for data with impulsive
behavior. They are characterized by a parameter « (characteristic exponent) that takes values in the range
0 < o < 2. The value = 1 leads to the Cauchy distribution and the value @ = 2 to the Gaussian. The stable
distributions result from the central limit theorem if we remove the finite variance constraint. The only stable
distribution with finite second-order moments is the normal distribution. Since «-stable distributions follow
trom the central limit theorem they are invariant under linear transformations. Since there is no closed-form
expression for their probability density function. SaS random variables are specified [2, 39. 50] by their
characteristic function (that is, the Fourier transform of the PDF)

® (&) =exp(ju€ —|0&]Y) (50)

where « is the characteristic exponent, ¢ is a scale parameter, and yt is a location parameter. The heaviness
of the tails increases as « increases from | (Cauchy) to 2 (Gaussian). The estimation of the parameters of a



stable distribution from data is a challenging due to the presence of “spikes”. The published compilation {2]
provides a comprehensive review of statistical techniques for stable distributions from a practical perspective.
The estimation method used in this paper [30] is based on the use of the characteristic function.

Figure 23 shows the probability of false alarm when the matched filter detector is used for different
scenes as well as superimposed theoretical curves obtained using the family of SaS distributions for various
values of «. It can be seen that the tails of the empirical Pr4 curves can be modelled by the heavier tails of
the stable distribution.
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Figure 23. Matched filter output statistics and their modelling using stable distributions.
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S. DETECTION ALGORITHMS FOR SUB-PIXEL TARGETS

By definition, subpixel targets occupy only part of the pixel area. The remaining part is filled with
one or more materials, which will be collectively referred to as background. In this section, we discuss the
detection of compact and isolated subpixel size objects characterized by a known spectral signature with or
without variability. As aresult of this area mixing, the observed spectral signature can be modelled reasonably
well as a linear combination of the target and background spectra. Furthermore, there is always an additive
amount of noise from various sources (sensor, atmosphere, etc).

The choice of the mathematical model used to describe the variability of target and background spectra
(subspace versus statistical), leads to different families of subpixel target detection algorithms. The variability
of the target spectral signature is always described using a subspace model Sa. If the columns of S are
endmembers, the vector a provides their abundances and should satisfy the constraints of the linear mixing
model. Otherwise, a simply determines the position of a target in the column space of S.

The variability of the background can be described using either a subspace model (structured back-
ground) or a statistical distribution (unstructured background). Therefore, the type of the background model
drives the development of subpixel detection algorithms.

Any matched filter-based target detection algorithm requires the specification of a spectral signature
of interest, which can be obtained from within the HSI cube or from a spectral library. Usually, targets are
modelled using a single spectrum. However, due to changes in atmospheric conditions, sensor geometry,
surface defects and films, a target spectral signature can exhibit significant variability. If we have available
a multitude of target spectrum observations, say s, k = 1,2, ..., N,, we can model target variability and
use it in the detection algorithm to improve robustness. We can account for this variability statistically or
geometrically. A statistical description could use the mean and covariance of the available target signatures
$1,82,... ,8N,. A geometrical description involves finding an orthogonal base that spans, with sufficient
accuracy, the subspace spanned by the set of vectors sy, s2,...,Sy,. These basis vectors constitute the
columns of the target subspace matrix S,. It has been shown [61] that the target subspace for a material can
be described by a small number of basis vectors under a variety of scenes and illumination conditions.

5.1 UNSTRUCTURED BACKGROUND MODELS

Unstructured background models assume that the additive noise has been included in the background b,
which in turn is modelled by a multivariate normal distribution with mean g, and covariance matrix I'y, that
isb ~ N(0, I') (forsimplicity, we drop the subscript , from this point forward). The competing hypotheses
are

Hy: x =2, Target absent

(51
H,: x=Sa+b, Targetpresent

Hence, x ~ N(0, I') under Hy and x ~ N(Sa, I') under H,. In addition, we assume that we have accessto a
set of training background pixels x(n),n = 1,2, ... , N, which are independently and identically distributed
(IID). The test pixel x and the training pixels are assumed statistically independent. Since, x(n) ~ N (0, I'),
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